skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hettiarachchi, Eshani"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Despite their atmospheric abundance, heterogeneous and multiphase reactions of carbonyl compounds are poorly understood. In this study, we investigate the surface adsorption and surface chemistry of methyl ethyl ketone (MEK), the second most abundant ketone in the atmosphere, with several mineral oxide surfaces including SiO 2 , α-Fe 2 O 3 and TiO 2 . In particular, the chemistry of MEK with these common components of mineral dust, under both dry and high relative humidity (RH%) conditions, has been investigated. Furthermore, reactions of adsorbed MEK with gas-phase NO 2 were also examined. We show that MEK molecularly and reversibly adsorbs on SiO 2 whereas irreversible adsorption occurs on both α-Fe 2 O 3 and TiO 2 surfaces, followed by the formation of higher molar mass species resulting from dimerization and oligomerization reactions. Isotope labeling experiments confirmed the incorporation of H atoms from surface hydroxyl groups and strongly adsorbed water into these oligomer products. Most interesting is that at 80% RH, oligomer formation on α-Fe 2 O 3 shifts toward a higher relative abundance of MEK tetramer relative to the dimer while on TiO 2 there was no change in product distribution. In the presence of gas-phase NO 2 , MEK undergoes degradation to formaldehyde and acetaldehyde, followed by the formation of aldol condensation products of these aldehydes on the α-Fe 2 O 3 surface. Overall, this study provides mechanistic insights on mineralogy-specific heterogeneous chemistry of a prevalent and atmospherically abundant ketone. 
    more » « less
  2. Abstract Charge‐separated metal–organic frameworks (MOFs) are a unique class of MOFs that can possess added properties originating from the exposed ionic species. A new charge‐separated MOF, namely, UNM‐6 synthesized from a tetrahedral borate ligand and Co2+cation is reported herein. UNM‐6 crystalizes into the highly symmetricP43nspace group with fourfold interpenetration, despite the stoichiometric imbalance between the B and Co atoms, which also leads to loosely bound NO3anions within the crystal structure. These NO3ions can be quantitatively exchanged with various other anions, leading to Lewis acid (Co2+) and Lewis base (anions) pairs within the pores and potentially cooperative catalytic activities. For example, UNM‐6‐Br, the MOF after anion exchange with Branions, displays high catalytic activity and stability in reactions of CO2chemical fixation into cyclic carbonates. 
    more » « less